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Abstract

A database storage, search and retrieval method of constitutive model responses for
use in plasticity simulations is developed to increase the computational efficiency
of finite element simulations employing complex non-linear material models. The
method is based in the in situ adaptive tabulation method that has been successfully
applied in the field of combustion chemistry, but is significantly modified to better
handle the system of equations in plasticity. When using the database, the material
response is estimated by a linear extrapolation from an appropriate database entry.
This is shown to provide a response with an acceptable error tolerance. Two different
example problems are chosen to demonstrate the behavior of the constitutive model
estimation technique: a dynamic shock simulation, and a quasi-static inhomogeneous
deformation simulation. This generalized in situ adaptive tabulation method shows
promise for enabling simulations with complex multi-physics and multi-length scale
constitutive descriptions.
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1 Introduction

The complexity of continuum constitutive models used in finite element simu-
lations has increased due to demands for better representation of material be-
havior and the availability of ever improving computational capabilities. Some
of the most complex constitutive models are found in concurrent multiscale
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modeling simulations in which the mechanical response at an integration point
within the finite element simulation is determined by embedded simulations of
another boundary value problem at a lower length scale. The embedded sim-
ulations may consist of smaller finite element models, dislocation dynamics,
molecular dynamics, or ab initio simulations[1–4]. Somewhat less complex is
the broad class of continuum internal state variable models that evolves a set
of variables chosen to represent the evolving state of the material. The evolu-
tion equations for these variables often involve coupled nonlinear expressions
that must be solved simultaneously with the thermo-mechanical response of
the model. Both of the these methods may involve a significant number of de-
grees of freedom whose values do not directly enter into the global boundary
value problem but are nonetheless necessary for its solution.

Despite the exponential increase in computing power, scientists and engineers
must still be intelligent in solving time varying boundary value problems with
finite element methods. Inefficient solutions methods can quickly overwhelm
even the largest computers available, both in memory and CPU time. Per-
haps the most widely adopted methods to raise the efficiency of finite element
simulations are the methods of adaptive mesh refinement (AMR)[5]. AMR
techniques search for optimal heterogeneous mesh point distributions within
bodies to minimize the number of elements needed to solve particular bound-
ary value problems to a desired degree of accuracy. During the course of sim-
ulations, the discretization is time dependent and may vary as a function of
relative gradients in the problem solution.

While AMR techniques increase efficiency by optimizing the discretization of
space, the complex material models are usually calculated independently at
every integration point in a finite element mesh without regard for potential
redundancy in these calculations. For highly complex constitutive models with
many internal degrees of freedom, the calculation of the evolution of internal
state variables and the response of the constitutive model consumes most of
the CPU time during a simulation. Information gained from constitutive model
evaluation in one part of the body is typically not communicated to other parts
of the body or to other instants in time, with each integration point in the
finite element geometry running its own instance of the constitutive model.
For simple constitutive models, this approach may be the most efficient mode
of operation due to the cost of tabulating and communicating the material
response between integration points; however, for complex models, reuse of
previously computed responses to specific loading conditions can significantly
raise the efficiency of the overall simulation.

For example, consider a finite element simulation of homogeneous tensile elon-
gation of a metallic single crystal. Take the constitutive model used at the inte-
gration points to be a dislocation dynamics simulation with periodic boundary
conditions in which the internal state variables are the positions of the dis-
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location lines within the periodic cell. The communication between the finite
element simulation and dislocation dynamics simulation involves the finite el-
ement system applying a stress to the dislocation dynamics simulation over a
set time increment and the dislocation dynamics simulations updating the po-
sitions of all the dislocation lines returning the strain increment over that time
period to the finite element simulation. The dislocation dynamics simulations
providing the material response are orders of magnitude more computation-
ally intensive than the finite element simulation that drives them. If replicas
of the dislocation dynamics simulation cell are used to calculate the material
response at all of the material points, the same simulation is run as many
times as there are material points in the finite element simulation at each it-
eration. If, however, the information of material response at a single material
point is communicated to all the others, the efficiency of the total simulation
increases by a factor proportional to the number of integration points in the
homogeneous finite element system.

There has been limited investigation of numerical methods that increase the
efficiency of simulations by storing and communicating previously computed
constitutive material responses between integration points in continuum simu-
lations. One notable example is the in situ adaptive tabulation (ISAT) method
developed in the area of combustion modeling [6,7]. In the ISAT method, a
searchable database of constitutive model responses to known loading and
internal variable states is built on the fly as the simulation proceeds. When
a constitutive response at an integration point is needed, the system either
returns a tabulated response from the database or runs the underlying com-
plex constitutive model and adds the resulting response to the database. The
database is built on the fly because the portion of the state variable space
that is visited during solution of the boundary value problem is only a small
subset of the total state variable space. The storage needed for a pre-computed
database of all possible states would be immense, and even if it were possi-
ble to store that database, the efficiency of the search algorithms decreases
with the increasing database size [8]. The ISAT method has been shown to be
successful in a variety of boundary value problems in reactive chemistry that
develop well defined process zones for extended periods of simulation time,
such as those found in flame propagation problems [6].

In this article, we describe an in situ database construction and retrieval
method applied to constitutive model evaluation and estimation for simu-
lations of plastically deforming solids. To demonstrate the methodology, we
employ a continuum crystal plasticity constitutive model because of its high
degree of nonlinearity and large number of internal state variables. The consti-
tutive model is described in Section 2. The construction, search and retrieval
methods of the in situ database are described in Section 3. The method is ap-
plied to several example problems whose geometries and results are described
in Section 4. We have chosen two time varying boundary value problems to

3



test the generality and performance of the method: a dynamic shock simula-
tion of a single crystal and the deformation behavior of a rectangular plate
with a hole. We conclude with a short discussion of the implications of the
results on directions for further research in the area of efficient material model
evaluation methods.

2 Continuum Crystal Plasticity Model Description

The material constitutive model employed here describes the thermoelas-
tic and viscoplastic response of crystals. The formulation accounts for finite
strains and rotation of the crystal lattice with deformation. The inelastic de-
formation occurs by slip on specific crystallographic systems with the slip rate
determined by the resolved shear stress on that system as well as its state of
hardening.

The crystal plasticity model parallels existing models for finite-strain deforma-
tion of elasto-viscoplastic crystals [9,10] with a notable modification to handle
finite volume strains that occur in shock calculations. Particulars of the con-
stitutive model are not the focus of the work presented here; some details are
contained in the appendix.

In integrating the constitutive model, material state variables at the beginning
of the time increment and the velocity gradient over the time increment are
given. The system of equations outlined in the appendix is solved implicitly,
and the stress and state variables at the end of the time step are computed.

2.1 Incremental update of the material state

In all of the examples presented here, a boundary value problem is solved using
a finite element formulation with the material constitutive response given by
the crystal plasticity model. In this context, the role of the constitutive model
is to provide the thermo-mechanical response of the material at each finite
element integration point. The material state must also be simultaneously up-
dated and maintained for proper history dependence of the material response.
If the finite element solution is using an implicit time integration scheme, the
material model must also provide a material stiffness. For the update of the
state descriptors for a single crystal, the inputs and outputs may be organized
into vectors

i =
{
∆t, L̄o(9), e, V̄

′(5), ln(det(V)), h
}

(1)
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and

o =
{
V̄′(5),q∆(4), h

}
. (2)

The input vector consists of the time step ∆t, the velocity gradient Lo, the
internal energy e, the thermo-elastic strain components, V′ and ln(det(V)),
and the strength h. The number of unique scalar quantities composing the
vector and tensor parts are given in parentheses. In order to reduce the input
vector size by eliminating explicit dependence on the crystal orientation, the
velocity gradient L and the deviatoric thermo-elastic strain V′ are rotated
into a reference crystal lattice frame to obtain L̄o and V̄′.

The output vector consists of the updated deviatoric thermo-elastic strain V̄′,
a quaternion q∆ that parameterizes the incremental rotation of the crystal
lattice over the time step ∆t, and the updated strength variable h. If an
implicit integration scheme is employed to solve the finite element system of
equations, then the material model must also provide J = ∂o/∂i to enable
calculation of the material stiffness.

In terms of these input and output vectors, the task of the material model is
then to compute

o = M [i] , (3)

where M can be thought of as a complex nonlinear transfer function con-
verting inputs i into ouputs o. Solving the highly nonlinear equations for the
crystal response described by o is computationally expensive. In principle the
response also includes the stress and the internal energy needed by the coarse
model, but they are comparatively inexpensive to compute once o is known.

3 Constitutive Model Approximation

The goal of this work is to increase the efficiency of finite element simulations
by reusing information obtained from evaluations of the constitutive model.
This reuse reduces the frequency at which the set of coupled nonlinear equa-
tions in the constitutive model is solved.

By storing previously computed data sets of i|ref , o|ref , and J|ref from eval-
uations of the nonlinear transfer function M in a searchable database; the
constitutive model response may be estimated. For a given input, i, an output
o|est may be estimated from one of the previously computed data sets by

o|est = o|ref + J|ref (i− i|ref) . (4)
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This equation corresponds to a truncated Taylor series expansion about the
known value. In implicitly integrated finite element simulations, the thermo-
mechanical jacobian must also be determined.

The first challenge of the approximation strategy is to limit the output error
such that

‖Co (M [i]− o|est)‖≤ εo , (5)

where Co is a diagonal weighting matrix that normalizes and scales the rela-
tive importance of various components of the output vector, and εo is a preset
error tolerance. An error more difficult to manage is the one that may accu-
mulate in the system from successive approximations of path dependent state
variables rather than actual evaluations of the complex constitutive model.
We do not formally address these possible cumulative errors, but through a
few example applications, we show that such errors either are small or do not
appear to propagate. The second challenge of the approximation strategy is
to develop a cheap (in the computational sense) method to find the best pre-
viously computed data set stored in a database for use in the extrapolations.
The rest of the section discusses our treatment of these two challenges.

3.1 Ellipsoids of Accuracy

The first challenge is to identify the region of the input space associated with
each database entry i|ref in which the linear extrapolation estimate (Equa-
tion 4) lies within the error tolerance (Equation 5). This subject has received
much attention in Pope’s work [6]. He points out that a good estimate for
the error in the linear approximation could be based on the second derivative
of the output vector with respect to the input vector, but computation of
that second derivative is often expensive. Its expense could easily make the
approximation method more computationally intensive than calculating the
response directly through the nonlinear transfer function. Rather than com-
puting the second derivative to estimate the accuracy of the extrapolation,
Pope employs a hyper-dimensional Ellipsoid of Accuracy (EOA) whose en-
closed region contains points for which there is a desired level of confidence
in the extrapolated value. The EOAs for the reference points evolve with the
information gained from actual constitutive model evaluations. They expand
to include new points that meet the error tolerance. The EOAs provide a
very compact means of keeping track of the information provided by previous
constitutive model calculations on the region of validity around each reference
point. We borrow the concept of EOAs for our reference points from Pope, but
we significantly modify the expansion algorithm to better handle problems in
plasticity.
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An EOA of a previously computed data set in the output vector space may
be defined by the set of vectors o that satisfy the following condition

‖A (o− o|ref)‖ ≤ 1 , (6)

where A is a matrix that describes the shape of the ellipsoid in the output
vector space. Note that Equation 6 describes a solid hyper-ellipsoid in the
output vector space.

Following Pope, we initialize A conservatively such that the EOA for a ref-
erence data point contains those points for which the error tolerance given
by Equation 5 would be satisfied simply by the reference value o|ref if the
response function M were strictly linear. Taking o|est = o|ref and M =
o|ref +J|ref (i− i|ref) in Equation 5 we arrive at the initial condition A = 1

εo
Co.

A will evolve according to the algorithm described below to account for infor-
mation from subsequent constitutive model evaluations.

Using Equation 4 to estimate o, Equation 6 is equivalent to

‖A J|ref (i− i|ref)‖ ≤ 1. (7)

Because the input vector space has higher dimension than the output vector
space, the region of accuracy is not closed in the input space. Input vector
directions in the null space of J|ref do not contribute to the distance measure
determining the EOA. The region of accuracy in the input space is closed by
adding the condition

di ≤ εi , di = ‖Ci (i− i|ref)‖ , (8)

where Ci is a diagonal matrix that normalizes and scales the components of
input vectors, and εi is an input error tolerance. In practice, εi is chosen such
that a given input will fail satisfy Equation 7 before it fails to satisfy Equation
8 unless it is closely aligned with a vector in the null space of J|ref .

If M [i] yields a point in the output vector space initially outside the EOA
satisfying Equation 5, then the EOA may be grown to include that point.
Whereas Pope employs a growth algorithm that finds the minimum volume
concentric ellipsoid that completely contains the current ellipsoid and the new
point, we diverge from his method and employ a somewhat more general
algorithm that allows the center of the ellipsoid to change. Our EOA update
algorithm takes the following form with the previously computed data set
information transforming into the new primed quantities

A′ =BA (9)
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i|′ref = i|ref +
η∗ − a

η∗
(i− i|ref) (10)

o|′ref = o|ref +
η∗ − a

η∗
J|ref (i− i|ref) (11)

J|′ref = J|ref (12)

where

B=
1

b
I +

(
1

a
− 1

b

)
n∗ ⊗ n∗ (13)

a =
(2 + m) η∗ +

√
4 + 4m + η2

∗m
2

4 + 2m
(14)

b =

√
1

2
β −

√
β2 − 4a2 with β = 1 + 2aη∗ − η2

∗ (15)

n∗ =
AJ|ref (i− i|ref)
‖AJ|ref (i− i|ref)‖

(16)

η∗ = ‖AJ|ref (i− i|ref)‖ (17)

and m is equal to one less than the dimension of the output space for mini-
mization of the EOA volume increase.

If m is set to a value other than one less than the dimension of the output
space, the objective function being minimized is different than the minimum
volume ellipsoid. Other objective functions may be attractive because of the
manner in which the EOA growth takes place. In the limit m →∞, the Pope
solution is recovered for which the minimum volume ellipsoid is found with
the additional constraint of a fixed center. For m = 0, the ellipsoid does not
extend in the −(i− i|ref) direction further than the previous ellipsoid but may
significantly expand in directions orthogonal to (i − i|ref). Choices between
these two extreme values of m can be viewed as mixtures of the two extreme
solutions. For all values of m the entire region enclosed by the previous EOA
is enclosed within the new EOA. Figure 1 shows three examples of different
values of m used to control the ellipsoid growth for the same initial EOA and
new point in the output vector space to be included in a new EOA.

Since there is a strong hysteresis in the stress-strain behavior of a plastically
deforming solid, the limit m → ∞ solution employed by Pope could poten-
tially cause significant error to enter the solution. If an EOA were grown by
sampling points on the loading curve and allowed to extend symmetrically
in the unloading direction, estimating the unloading behavior through the
database entries could result in extrapolation errors that are orders of mag-
nitude larger than εo. To solve this potentially serious problem, the simplest
solution was to retain the structure of ellipsoid regions describing the limits
of reliable extrapolation and move the ellipsoid centers. Alternatively, a more
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complex hyper-dimensional surface could be employed to enclose the added
high-confidence region.

The basic issue here is that the regions of confidence, whether they are EOAs
or something else, necessarily need to expand to include points that have not
been calculated explicitly in the constitutive model. The ability to make such
an expansion is based on the smoothness properties of the response. Naturally,
it is desirable to use as much information from previous calculations as possible
when expanding these regions because if they are expanded too far they will
include points for which the linear approximation does not meet the error
tolerance. Once included in an EOA, points inside are never again tested to
ensure they meet the tolerance. It is assumed that they do. The technique can
compensate for the possibility of invalid points in an EOA by putting a new
reference point sufficiently close to the EOA surface. In the resulting region of
overlap of two EOAs, the points are evaluated according to the closer reference
point, and this overlap may effectively excise invalid portions of an EOA. Even
so, the method used to expand the EOAs affects both the accuracy and the
efficiency of the computational model. It is typically impractical to save all
of the results from previous constitutive model evaluations, and the EOAs
provide a compact distillation of the relevant information. We have therefore
retained the basic structure of the EOA, but generalized its implementation
to give better performance in plasticity calculations.

Whereas the center of the EOA in Pope’s update scheme remained the position
where M [i] was evaluated, the center of our EOA changes and no longer
corresponds to the point of constitutive model evaluation. In our method, the
center of the initial EOA is still within the updated EOA. Due to linearity,
the extrapolation calculated in Equation 4 remains with respect to the initial
reference point that was exactly calculated by the constitutive model although
its exact position within the EOA is lost after the first update.

3.2 Extended growth of EOAs

EOA growth occurs when the error in the extrapolated solution is compared
to M [i] for an input vector i outside the EOA and determined to be less
than the specified acceptable error εo. The expressions discussed thus far grow
the EOA such that i is on the surface of new EOA. If ‖Co (M [i]− o|est)‖ <
εo, the efficiency of the simulation may be increased by extending the EOA
past the point i. Aggressively growing ellipsoids past probing input points
is particularly useful in explicit finite element simulations, as this extended
growth can prevent excessive M evaluations for input vectors that fluctuate
about the current EOA surfaces.
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Let

erel≡
‖Co (M [i]− o|est)‖

εo

(18)

be the relative extrapolation error. If we assume that all of the error is due
to the pth term in a Taylor series expansion about the center of the EOA, the
EOA may be extended past i to the point i′ = i|ref +(erel)

−1/p (i− i|ref) where
εo is reached. A more conservative approach that caps the growth for erel = 0
is to extend growth by a factor

g = g′
(

1

1 + (g′p − 1) erel

) 1
p

(19)

where the parameter g′ is the maximum growth factor. The growth factor g has
the property that it is always less than both g′ and the maximum factor allowed
by the Taylor series analysis ((erel)

−1/p). Figure 2 shows the functional behavior
of g versus erel for several values of p. As p increases and the error is assumed
to be associated with higher order terms in the Taylor series expansion, the
growth factor becomes an increasingly conservative function of the relative
error. The growth factor modifies the solution proposed above for the EOA
growth by modifying the expression for η∗ such that it now becomes

η∗ = g ‖AJ|ref (i− i|ref)‖ . (20)

3.3 Database Structure of Extrapolation Data Sets

The database that contains the collection of the previously evaluated data
sets and the EOAs described above is given the form of an unstructured tree
that is grown on the fly as required by the finite element simulation. The tree
is non-unique and history dependent such that the order in which database
entries are added determines their position in the tree. Each point in the tree
contains a data set for extrapolation; the EOA; and pointers to its parent, to
its first child, and to its next sibling. The search algorithm proceeds as follows.

An input vector query i is made, and the tree search is started from its base,
and the value of di (Equation 8), of the parent is compared to the values found
in its children. The tree search proceeds until the parent node has a smaller
value of di than any of its children. That parent node is now considered the
“closest point” in the tree. Given that our tree is non-unique, there is no
guarantee that the “closest point” found at the end of the search is the closest
point as measured by di of the entire tree; it is however likely to be a good
point from which to estimate the response of the transfer function M.
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If i is within the EOA of the “closest point” from Equation 7 and Equation 8
is satisfied, o|est is calculated using Equation 4 and returned to the finite
element simulation. If i is outside the EOA of the “closest point,” o = M [i]
and J [i] are calculated. If the erel is less than or equal to unity, the EOA
of the closest point is grown to encompass i using the method outlined in
the previous subsections. Otherwise if erel is larger than unity, a child node
is added to the “closest point” with the data obtained from the constitutive
model evaluation and the initialization of the EOA already discussed. Note
that when a constitutive model evaluation is performed only the tree node
found to be the “closest point” is modified.

For added efficiency, when a response is returned to the finite element simula-
tion, the location of the “closest point” within the tree structure is stored. At
the next time step, the queries search the subtree branching from their “clos-
est points” of the previous time step. If the result of the subtree search finds
an entry whose EOA includes the query point, the response is extrapolated.
If the query is outside the EOA of the “closest point” in the subtree, a search
of the entire tree is conducted for the “closest point.” If the query point again
enters the subtree whose parent is the previous “closest point,” the subtree
search is not repeated but rather the query jumps to the “closest point” found
in the initial subtree search, and the database is modified as described in the
previous paragraph with an evaluation of M.

Figure 3 summarizes the algorithm used in providing a response to a consti-
tutive model evaluation request.

4 Illustrative Examples of Method Application

Two example problems are chosen to illustrate the behavior of the method in
different types of loading histories: a dynamic flyer-target impact, and quasi-
static loading of a plate with a stress concentration. The method is well suited
to the impact problem, in which the deformation is initially concentrated in
compressive shocks, and these shocks approach steady state before they reach
the free surface of the target. In the quasi-static problem, the monotonically
increasing load results in continuous exploration of new regions of material
state in the constitutive model. The quasi-static problem also involves sub-
stantial inhomogeneity due to the effects of the stress concentration. Despite
the range of deformation conditions represented in the example problems, the
method performs well in both cases.

Material properties appropriate to unalloyed copper are used for both example
problems. Parameters are given in the appendix. Input and output vector
weights, Ci and Co, are largely kept constant. The weights for ∆t and L̄o
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are however adjusted according to the physics of each example problem. In
general, it is important to adjust the weights so that the distance measures
in the input and output vector spaces are not dominated or perverted by
particular entries in an undesirable fashion.

To illustrate the behavior of the method, simulations are performed with EOA
growth m values of m = 0, m = 9, and m →∞. The m = 9 case corresponds
to ellipsoid growth with minimum volume increase in the actual dimension
of the output vector space. The m = 0 and m → ∞ cases demonstrate the
extremes of the ellipsoid growth solution.

4.1 Dynamic Shock Loading

This example problem was chosen to illustrate the performance of the method
for situations with a fairly steady deformation process zone and to demon-
strate application in an explicit finite element simulation. The experiments
simulated are flyer-plate impact tests. The modeled configuration comprises
a copper flyer disk 1 cm thick and traveling 200 m/s impacting a 2 cm thick
stationary single crystal copper target with a [100] orientation. The other di-
mensions of the flyer and target are large compared to the thickness so that
the deformation is one dimensional uniaxial strain. The diagnostics typically
associated with these experiments are velocity measurements made on the free
surface. Gas guns, laser interferometry, and other technical details related to
dynamic loading experiments are described in [11].

When the plates collide, elastic and plastic waves are generated at the im-
pact surfaces of both flyer and target. At the current impact velocity, the
elastic waves travel faster than the plastic waves, creating a noticeable step
in the through thickness stress profile. When a wave strikes the free surface,
it is reflected and the free surface accelerates. The reflected wave relieves the
stress. The time evolution of the surface velocity indicates the time history of
the stress wave impacting the surface, so that features like the elastic-plastic
transition are evident as shown in the rising velocity in Figure 4. Velocity at
the free surface is zero until the arrival of the first wave after 4 microseconds.
The early time results where the velocity is zero are omitted. Following the
wave reflection, the free surface velocity is constant until another wave strikes
the surface.

The 2:1 thickness ratio of target to flyer results in the stress wave in the flyer
being reflected and reaching the target impact face at roughly the same time
as the original wave in the target reaches the target free surface. As the relief
wave originating from the flyer strikes the free surface, it drops the surface
velocity to nearly zero, as seen in Figure 4. Features evident on this portion
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of the velocity history are the reflected elastic-plastic transition from the flyer
and additional features associated with yield on stress reversal.

All of the simulations in this section are performed with an error tolerance of
εo = 10−3. The adaptive tabulation method is used only in the target in order
to simplify interpretation of the data. All simulations require roughly fifteen
thousand time steps to reach completion.

In Figure 4, the reference free surface velocity profile is obtained from a simu-
lation without adaptive tabulation (all constitutive model queries are satisfied
by performing a full nonlinear constitutive model evaluation). Figure 4 also
reports the magnitudes of the free surface velocity error for the three m cases,
all with no extended EOA growth (with g′ = 1 in Equation 19). Note, the ve-
locity errors (right axis) are plotted on a different scale than the velocity itself
(left axis). The free surface velocity is part of the overall simulation response
and is not a direct output of the constitutive model. It is therefore not directly
controlled by the preset error tolerances. Given the value of εo, velocity errors
are well controlled on average, with the m →∞ case showing the largest peak
errors.

For the same three cases, Figure 5 gives the evaluation fraction, the frac-
tion of constitutive model queries that result in nonlinear constitutive model
evaluations. Before the relief waves enter the target at approximately 4 µs, the
evaluation fraction remains relatively low. In the m = 9 and m →∞ cases, the
evaluation fraction tends to be diminishing over much of this simulation time.
This decrease happens as the elastic and plastic waves become distinct and
approach steady profiles as they travel. As rarefaction waves tend to spread as
they travel, the entrance of the relief waves into the target disrupts the trend
to steady state and increases the evaluation fraction.

As we will see below, the evaluation fraction performance is improved dra-
matically through the use of extended EOA growth. Due to the physics and
numerics involved, explicit simulations such as this one involve many waves
of relatively small amplitude. This noise results in many constitutive model
queries fluctuating about the boundary of the current EOA with the queries
outside the EOA requiring full non-linear constitutive model evaluation. By
extending the growth of an ellipsoid past a given query point, many of these
future queries resulting from minor fluctuations can be eliminated.

Figure 6 contains the evaluation fraction, database size, and free surface veloc-
ity error for a suite of simulations in which the extended growth parameters,
g′ and p, are systematically varied. Results for g′ = 1 are not plotted, as they
correspond (for all p) to the cases given in Figure 5. For all three m cases,
extended growth gives a considerable reduction in evaluation fraction (top
row of Figure 6). If the simulations were dominated by the time to evaluate
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the constitutive model, nearly two orders of magnitude in speedup would be
observed. For a given set of extended growth parameters, the evaluation frac-
tion for the m = 0 case remains relatively high. In all m values examined, as
p increases the extended growth is severely restricted and similar evaluation
fractions are obtained regardless of g′.

Some fraction of the constitutive model evaluations result in the creation of
new database entries. The total database sizes at the end of the simulations
are shown in the second row of Figure 6. More aggressive growth reduces the
number of evaluations used to grow the EOAs, but it has a relatively small
impact on the number of database entries needed to fill the required region of
the output space. Therefore the database sizes do not vary as widely as the
evaluation fractions.

Time-averaged velocity errors given in the bottom row of figure Figure 6 are
obtained by averaging the magnitude of the velocity error in time, beginning at
4 µs. Velocities in all simulations are zero before 4 µs, and including this time
range would artificially decrease the error measure. In general the errors are
well controlled at this value of εo for the range of extended growth parameters.
Errors from the m →∞ case span a broader range and are larger than those
observed in the other two cases.

Overall, the m = 0 and m = 9 cases give better error control for this example
problem. The most conservative case here is m = 0 because the loading is
such that while load reversals are common the material points follow similar
paths in the state variable space displaced in time. For larger εo and certain
ranges of the constitutive model parameters, the m → ∞ case can result in
unphysical output vectors. This pathology is due to the stiff nature of the
ordinary differential equations in the constitutive model and the property of
the m →∞ growth to extend the EOA too far in the unloading paths of the
materials such that the error tolerances are violated. On the other hand, the
m = 9 and m →∞ cases yield greater computational efficiencies.

4.2 Deformation of a Plate with a Hole

In this example problem, a plate with a stress concentration is subjected
to monotonic quasi-static loading. The plate is extended in the horizontal
direction and allowed to contract in the vertical direction. That is, the top
surface is traction free. Surfaces normal to the plane are also traction free.
The cube directions of the crystal lattice are initially aligned with the sample
directions so that, by symmetry, only one eighth of the plate needs to be
simulated (shown in Figure 7). A cylindrical hole through the plate acts as a
stress concentrator, and in Figure 7 we see that the strain localizes in a band
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near the hole. The plate is extended until the bulk of the domain is deforming
plastically. Both the highest and the lowest effective strains are located at the
edge of the hole.

The hole not only concentrates the stress but also results in changes to the
deformation mode. The crystal lattice rotations and the non-proportional de-
formation make the problem more challenging for the adaptive tabulation
method because it may use a larger region of a given EOA. Furthermore, the
progressive overall loading means that the constitutive model is exploring new
regions of its state space with each new time step. Adaptive tabulation method
is nevertheless able to appreciably reduce the number of full non-linear con-
stitutive model evaluations. In this problem, the reduction is largely due to
database building during iterations within a given time step. An implicit time
stepping scheme is used at the finite element level, and several iterations are
required to obtain the velocity field solution for each time step. The evaluation
fraction for the first iteration may be high, but as the finite element solution
converges the changes to the velocity field solution decrease in magnitude and
the evaluation fraction falls off rapidly with each new iteration.

The evaluation fraction and relative errors are explored as a function of the
preset error tolerance εo of the EOAs. The relative error is calculated for two
quantities: the applied load, and the strain rate at a material location near the
stress concentration. The absolute error is measured as a function of time with
respect to a simulation in which all constitutive model queries are provided
by full non-linear model evaluations. The relative errors are then calculated
as the time averaged magnitude of these absolute errors divided by a constant
representative value of the quantity in question. These error measures quantify
only the modeling error in the adaptive tabulation method; as the evaluation
fraction approaches unity the error goes to zero. Figure 8 shows the variation
in these relative errors with εo.

The applied load is a quantity obtained by summing over all of the tractions
on the loading face, and it is not surprising that this aggregate quantity has
smaller errors for a given value of εo than the error in local quantities like
strain rate. The relative error in local strain rate may also be greater because
the material point at which it is measured is in the plastic regime for a longer
period of time than rest of the geometry and errors are largely absent in the
elastic regime. For both error measures, m = 9 tends to give the best results.
In this example problem, unlike the previous example, m = 0 does not appear
to be the conservative choice. The fact that the slopes of the relative error
curves tend to 1 as εo becomes small is an indication that errors are well
controlled.

The evaluation fractions associated with different preset error tolerances are
shown in Figure 9. As mentioned above, much of the reduction in the full
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non-linear model evaluation is due to building the database during iterations
for the velocity field solution of a given time step. As εo approaches zero,
more nonlinear constitutive model evaluations are required and the evaluation
fraction approaches unity. Viewing figures 8 and 9 together, it is concluded
that small evaluation fractions are achieved without inducing large errors.

By reflecting on the results of both examples, it appears that the m = 9 case
would be the best overall choice for the EOA growth scheme. This value of m
corresponded to minimizing the volume in the output space of our state vec-
tors. In the material shock example, it provided acceptable responses as gauged
by the preset error tolerance while requiring fewer full non-linear model eval-
uations than the m = 0 case. In the example with the stress concentration, it
provided the best responses while requiring fewer full non-linear model evalu-
ations than the m →∞ case. It appears that if one is to apply these methods
with little understanding of the trajectory of the system in the state space of
the material model, setting the m to one less than the output space dimension
of the system is the best choice both in terms of accuracy and efficiency of the
calculation.

5 Conclusions

In this article, we have demonstrated that the in situ adaptive tabulation
(ISAT) method first developed for use in combustion simulations can also be
applied to simulations of plasticity. Due to differences between the thermo-
mechanical constitutive equations used in plasticity and chemical kinetics con-
stitutive equations used in combustion simulations, the original ISAT method
had to be modified. Whereas the extrapolation centers in the original ISAT
database remain fixed, here the centers move as dictated by our modified
growth algorithms. We find that our Ellipsoid of Accuracy growth scheme led
to more accurate results, and that extending their growth when the errors were
less than a present tolerance reduced the number of full non-linear constitutive
model evaluations.

We have demonstrated the principle that building a searchable database of
computed constitutive model evaluations and estimating material response
through tabulations can significantly increase the efficiency of a finite element
simulation if the computational expense is dominated by constitutive model
evaluations. The base material model that we chose to illustrate the method
was a rather simple crystal plasticity model when compared to other crystal
plasticity models in the literature, so the actual time to run a simulations only
increased by a small (but significant) factor. In the cases where the evaluation
time for the constitutive model is a primary consideration, simulations that
were computational unfeasible now may become possible with this paradigm
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used for constitutive model evaluation.

A current limitation of this method is that the database is not unique and
history dependent, and there is no guarantee that the point in the database
that is used to tabulate the constitutive response is the point that would yield
the smallest error when compared to a full non-linear model evaluation. Other
database structures whose search results in the best point from which to ex-
trapolate the response to a given query need to be explored. Furthermore,
distributed database storage techniques must also be investigated. In large
problems with complex multi-variate constitutive models, database storage
requirements quickly overwhelm the physical memory of individual worksta-
tions. The promise of this method to increase the efficiency of finite element
simulations in concurrence with popular adaptive mesh refinement methods
must also investigated.

Appendix

A Material model details

This section is meant only to convey the overall character of the constitutive
model. More details may be found in [12] and [13] for similar crystal plasticity
models.

Deformation of the crystallite is represented in terms of a multiplicative de-
composition of the deformation gradient of the form [10]

F = V ·R · Fp (A.1)

where V is a symmetric tensor that embodies both elastic and thermal lattice
straining, R is the lattice rotation, and Fp is deformation due to dislocation
glide.

The velocity gradient L is then given by

L = Ḟ · F−1 = V̇ ·V−1 + V · L̂ ·V−1 (A.2)

L̂ = Ṙ ·RT + R · L̄ ·RT , L̄ =
n∑

α=1

γ̇α(s̄α ⊗ m̄α) (A.3)

Equation A.3 represents the slip rate γ̇α on a crystallographic slip system,
α, that is characterized by slip plane m̄α and slip direction s̄α. The slip rate
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is a nonlinear function of the Cauchy stress projected on the slip system, as
described below.

The Cauchy stress σ is determined by the relations

σ =
1

det(V)
τ̂ , τ̂ = fK(Ê, e) (A.4)

governing the elastic response, where e is the internal energy. The internal en-
ergy enters through the equation of state, such as the Mie-Grüneisen equation
of state used here [14]. The logarithmic lattice strain measure Ê = ln(V) is
used to facilitate decoupling of the volumetric and deviatoric elastic deforma-
tion.

For metals of cubic crystal symmetry, it is typically acceptable to assume that
the distortional lattice strains are small even when the volume strains are large.
This assumption permits substantial simplification of the kinematics. Thus,
the volume strain is given exactly by tr(Ê) = ln(det(V)), and the deviatoric
lattice strain measure is approximated by Ê′ ≈ V′(det(V))−1/3, where a prime
denotes the deviatoric part. The formulation is simplified appreciably by this
assumption of small deviatoric lattice strains and by using components of the
lattice strain and its time rate of change computed in a rotating frame.

The Kirchoff stress τ̂ , expressed in terms of these strain variables, is pro-
jected onto the glide system to compute the driving force for slip. Under the
simplifying lattice strain assumptions,

τα = τ̂ : (ŝα ⊗ m̂α) . (A.5)

This resolved shear stress and the strength of the glide system determine the
slip rate. In this simplified crystal constitutive model, a single variable h is
used to describe the strength of the crystallite. The slip rate is then computed
according to a mechanical threshold stress based kinetics model [15] combined
with drag-limited dislocation velocities [11,16,17]:

γ̇α =

(
1

γ̇α
w

+
1

γ̇α
r

)−1

sgn(τα) (A.6)

γ̇α
r = γ̇ro

(
1− exp

(
−|τ

α|
Dr

))
(A.7)

γ̇α
w = γ̇wo exp

(
−∆Gα

kθ

)
(A.8)
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with

∆Gα =

µαgob
3
(
1−

(
|τα|−τa

gα

)p)∗q
for |τα| > τa

µαgob
3 for |τα| ≤ τa

(A.9)

and gα = s
√

h. The value of µαgob3

kθ
is typically large enough that for |τα| ≤ τa

the value of γ̇α
w is effectively zero. We have defined x∗q = |x|q sgn(x). The drag

stress Dr depends linearly on temperature. In the context of the work here,
the dislocation glide is not drag-limited, but the drag effects are a physically
meaningful way to control the numerics when inputs to the model may be
prone to errors.

The evolution of the (dimensionless) material strength h is calculated accord-
ing to

ḣ =
(
k1

√
h− k2(γ̇)h

)
γ̇ , k2(γ̇) = k2o

(
γ̇

γ̇so

)−1/n

(A.10)

where γ̇ =
∑

α |γ̇α|.

In this formulation, the complete state of a crystal is described by the fol-
lowing: the lattice strain measures V′ and ln(det(V)); the lattice orientation,
which is parameterized using quaternions q [18]; and the variable describing
the current material strength h.

Material parameters are given in Table A.1 and are chosen to be appropriate
for unalloyed copper. Elasticity parameters are drawn from [19]. Parameters
for the Mie-Grüneisen equation of state are drawn from [20] and are not re-
peated here. Parameters for thermally activated slip kinetics are from [15].
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• Retrieve the stored constitutive model state for the beginning of the
time step

• Retrieve the tree point that was used in answering the previous
constitutive query for this finite element point; use it as the guess in
starting the tree search

• Form the input vector i for the current query

• Find the “closest point” in the tree: if ‖A J|ref (i− i|ref)‖ ≤ 1
(Equation 7) is satisfied for the guess tree point then {
· Return the guess as “closest point”

} else {
· Search the sub-tree starting at the guess

· if (‖A J|ref (i− i|ref)‖ ≤ 1) for the closest point found in the
sub-tree then {return it as “closest point”} else {Start the search from
the top of the tree to obtain “closest point”}
}

• Retrieve i|ref , o|ref , and J|ref for the “closest point”

• Compute o|est = o|ref + J|ref (i− i|ref)

• if for “closest point” (‖A J|ref (i− i|ref)‖ ≤ 1) and Equation 8 is
satisfied then {
· Use o|est for the output

} else {
· Run the constitutive model to determine o = M [i] and J [i]

· if the condition in Equation 8 is violated then {
· Add a tree point at i

} else {
· Compute the error eo = ‖Co (o− o|est)‖
· if eo ≤ εo (see Equation 5) then {
· Compute η∗ using Equation 20

· Compute B using η∗ and Equations 13 through 16

· Update the tree point using Equations 9 through 12

} else {Add a tree point at i}
}

}

• Store the updated constitutive model state; compute stress and
material tangent stiffness as needed for the finite element code

Fig. 3. Outline of constitutive query algorithm.
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Fig. 5. Impact simulation results. The fraction of non-linear constitutive model
evaluations is 0.39, 0.20, and 0.17 for the m = 0, m = 9, and m → ∞ cases
respectively.

25



1.1

1.2

1.3

1.4

1.5

Fraction of non-linear constitutive model evaluations

g
'

Database Size at Simulation End

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

x 10
4

1.1

1.2

1.3

1.4

1.5

g
'

1 2 3 4 5 6 7

Log  [ p ]
2

Time Averaged Normalized Free Surface Velocity Error

1 2 3 4 5 6 7

Log  [ p ]
2

1 2 3 4 5 6 7

Log  [ p ]
2

1.1

1.2

1.3

1.4

1.5

g
'

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
x 10

-3

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

m = 9m = 0 m 8

Fig. 6. Impact simulation results.

26



Fig. 7. Accumulated effective strain, 0.0019 to 0.058.
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Fig. 8. Solution error as a function error tolerance in the adaptive tabulation strat-
egy. Solid lines show the error in applied load and dashed lines show the strain rate
error at a location near the stress concentration.
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Fig. 9. Fraction of constitutive model evaluations as a function error tolerance in
the adaptive tabulation strategy.
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